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Abstract

A survey on the benthic habitats and communities of the Langness Marine Nature Reserve in the Isle
of Man was carried out in 2024 Summer. The area was first designated as an inshore conservation
zone in 2016, as maerl beds and an eelgrass meadow were found, which are habitats of conservation
interest, followed by re-designation as Marine Nature Reserve (MNR) in 2018. As the MNR
is comparatively new to the others, baseline habitat mapping of it has yet to be done. This study
therefore aimed to map the benthic habitats and communities within the MNR, to provide baseline
information for future management and monitoring efforts. A benthic imagery survey was conducted
using a towed sledge, in which still images and footage of benthos were taken. The encountered
habitats were classified into biotopes using both a statistical approach and a classification system.
The survey results have identified 6 distinct benthic biotopes within the area of the MNR, with depth,
the type of substratum and hydrodynamic regime as primary abiotic factors shaping the communities.
No habitats of conservation interest have been identified. Although patches of maerl colonies have
been found in the northern regions of the MNR, they are mostly composed of dead nodules. No large

colonies of species of conservation interest or commercial species have been found.
Keywords:

Benthic Habitat; Mapping; Habitat classification; Marine Protected Area; Isle of Man
1. Introduction

Coastal benthic habitats are a key component of the marine ecosystem and are crucial to human
survival. Apart from being a hub that nurtures a diversity of species, the ecosystem services offered,
such as provision of food and abiotic resources, recycling of nutrients, and carbon sequestration, have
justified their importance (Barbier et al., 2011; Hall, 2002; Snelgrove, 1999). However, benthic
habitats are frequently experiencing disturbance, either by natural events, such as hydrodynamic
activities and biological interactions (e.g. predation), or by human activities (Gray and Elliott, 2009;

Hall and Harding, 1997; Jennings and Kaiser, 1998; Reise, 1978).

Regarding human disturbance to benthic habitats, fisheries activities are one the major players in
bringing about adverse impacts to the benthic ecosystems. Unregulated fisheries activities could lead
to drawbacks such as homogenisation of habitats, a decline in species biomass, abundance and
diversity, as well as a shrink in the size structure and production of a community (Beukers-Stewart
and Beukers-Stewart, 2009; Dayton et al., 1995; Jennings and Kaiser, 1998; Kaiser et al., 2006, 2002).

Fortunately, since the late 20™ century, the environmental management bodies around the globe have
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started to bring in an ecosystem-based approach (EBA) for fisheries management (FAO, 2003). Apart
from the focus on protecting the targeted species, the EBA also considered the entire ecosystem
in which the species live, aiming to preserve its structure, function, and diversity (Davies et al., 2021).
Marine protected areas (MPAs) are established as part of the implementation of the EBA management
(Gell and Roberts, 2003; Halpern and Warner, 2002; Roberts et al., 2001). With MPAs, the marine
habitats in the protected sea areas are avoided from detrimental activities (Renn et al., 2024; Sala and
Giakoumi, 2018), protecting the targeted species as well as its associated habitats and species

(Mesnildrey et al., 2013).

Situated in the middle of the Irish Sea, the Isle of Man (IoM) is a self-governing UK Crown
Dependency with a territorial sea covering a total area of approximately 4000 km? (Fig. 1) (DEFA,
2023). With such geographical privilege, it is not surprising that the fisheries sector has been a key
player in the Manx economy for centuries (DEFA, 2023; Duncan and Emmerson, 2018). The king
scallop, Pecten maximus, is the main fishery in Manx water, with the queen scallop, Aequipecten
opercularis, coming second (DEFA, 2015; Duncan and Emmerson, 2018). The Department of
Environment, Food and Agriculture (DEFA) Fisheries Directorate is a governmental body in the [oM
responsible for the management and protection of its territorial sea, fisheries and their supporting
ecosystems (Duncan and Emmerson, 2018). To date, 10 Marine Nature Reserves (MNRs) (a kind of
MPA) have been established within the Manx inshore territorial waters (0-3 nm), protecting a total
area of 430.75 km?, which occupy 10.8% of the entire Manx territorial sea (Fig. 1). The MNRs are
established for different reasons, including conservation purposes, fisheries management and

experimental research, but it varies among MNRs (DEFA, 2024a, 2017).
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Fig. 1. A map of the Isle of Man, showing the area and location of the 10 Marine Nature Reserves (MNRs) designed in
2018. The location/area of the Langness MNR is shaded in green. The situation of the Isle of Man within the British Isles

is shown on the smaller map at the top-left corner, indicated with a red box.

The coastal area of the Langness Peninsula was first in the spotlight in 2008. Thanks to its diverse
rocky reef habitat, eelgrass meadow, and diverse sand/mud habitats, it has been identified as one of
the candidate Marine Nature Reserve (MNR) sites in the ‘Manx Marine Nature Reserve Project’
(DEFA, 2010; Howe, 2018; Thomas et al., 2018). Followed by the implementation of the ‘Inshore
Marine Zoning Plan for the 0-3 Nautical Mile Area of the Isle of Man Territorial Sea’ in 2016, the
area has been designated as a ‘conservation zone’, with mobile fishing gear prohibited and habitats
of conservation importance (for Langness, it is the maerl beds and an eelgrass meadow) protected
(DEFA, 2017, 2016). On 1* September 2018, the area was re-designated as Langness Marine Nature
Reserve (MNR) (Fig. 2) under the Wildlife Act 1990, becoming part of the 10 inshore MNRs network.
General restrictions in MNR, such as bottom-towed fishing gear, are implemented in Langness MNR,
but a specific management plan for the MNR is still under preparation as the MNR is relatively new

(DEFA, 2018a, 2018b, 2017).
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To protect the sensitive/vulnerable habitats and their associated species, it is necessary to know their
distribution in the first place. Benthic habitat mapping with the inclusion of biotope classification is
therefore being regarded as a useful tool for the management of marine-based resources (Fraschetti
et al., 2024; Harris and Baker, 2012). As mentioned, the Langness MNR is relatively new, the baseline
habitat mapping has therefore yet to be done. Though the general distribution of the benthic habitats
within the Manx territorial sea was known, thanks to the previous coarse-scale survey (Hinz et al.,
2008), habitats and species with restricted distribution are yet to be identified. Thus, surveys on a

finer scale are required to be done in areas of conservation interest, such as the Langness MNR.

Given the aforementioned need, this study therefore aims to map the benthic habitats and
communities within the MNR on a finer scale, determining the type, distribution and extent. The
completion of the mapping work would provide baseline information for future management and
monitoring efforts of the MNR, such as the assignment of conservation or fisheries management zone,

just as in other MNRs.
2. Material and methods
2.1 Study Site

The study area, the Langness MNR, comprised a sector of the southeastern inshore waters of the [oM.
It extends eastward from Santon Head (54° 06.0000" N, 04° 33.0000' W) and southward from
Castletown Harbour (54° 04.3998' N, 04° 39.0000" W), out to 3 nautical miles from shore at an
astronomical high tide, which covered a total area of 88.67 km* (DEFA, 2024a, 2024b) (Fig. 2) .
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Fig. 2. A map showing the area of the Langness Marine Nature Reserve (MNR). Its situation within the Isle of Man’s

inshore waters is indicated on the small map at the bottom-right corner with a red box.

2.2 Habitat mapping

A grid system with a grid square size of 1km? each was used in this project to allocate sampling
stations across the area of the MNR. The sampling stations were roughly 1km apart. At each station,
a sledge with still image and video capability was deployed and towed along the seabed to record the
benthos present. The sledge is composed of a metal frame on skids, with cameras and light fixed at
the centre and oriented to face the seabed (Fig. 3). Two cameras in waterproof housing were used in
this survey, namely a Canon EOS 400D, set to take a flashed photo every 10 seconds [Field of View
(FOV) =44 x 29 cm], and a GoPro HERO3 for recording continuous video footage (FOV =~62 x 35

cm).

The sampling work took place over 4 days in June 2024 by onboarding the oM Government’s
Fisheries Patrol Vessel, the Barrule, and completed 49 transects within the MNR. At each sampling
station, the sledge was towed along the seabed at approximately 1 knot for around 10 minutes, to
obtain a 10-minute video clip and 60 still photos for each transect. Position data, including GPS
coordinates, time and vessel speed, were automatically logged every 30 seconds throughout the

survey journey and manually recorded at the beginning and end of each tow to allow geo-referencing
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of the captured photographs. Water depth was also noted down at the start, middle and end of each

tow.

Fig. 3. Photograph of the equipment, the sledge, used for collection of the benthic imagery data. Both the cameras and

light were fixed on the raised unit at the centre.

2.3 BRUV'S sampling

Baited remote underwater video systems (BRUVS) were used for the identification of mobile species
present within the MNR. Each of the BRUVS is composed of a rectangular metal frame with three
GoPro cameras (either HERO3 or HERO3+, settings: 1080p, 60/50/30 fps, Wide FOV) attached on
top, viewing at three different angles (top-down, top-45°left, and top-45°right) (Fig. 4). Bait (herring,
Clupea harengus) packed in a mesh bag was fixed at the bottom of the frame (in the centre), to
produce a scent for attracting mobile species. A total of 20 BRUVS were deployed, and each was left
on the seabed for at least an hour. At each deployment site, GPS coordinates, water depth, as well as

start and end time of deployment were recorded.
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Fig. 4. Photograph of the BRUVS, equipment used for collecting mobile species data. Three GoPro cameras at different

viewing angles were fixed on top of the rectangular metal frame.

2.4 Analysis of images and videos

2.4.1 Visibility and Quality Assessment

To ensure data reliability, the still images and video footage captured were assessed for visibility and
quality before any further analysis. The assessment was done by applying a standardised scoring
system adapted from Hannah and Blume (2012) (Table 1). Based on the defined criteria, the images

and videos were scored from 0 to 3; those that scored 0 on either visibility or quality were omitted

from further analysis.

Table 1

The scoring system applied for the visibility and quality assessment of the images and videos captured. (Hannah and

Blume, 2012).

Score Visibility Quality

0 The field of view is completely obscured by The image/video is completely blurred or has
close-up species or suspended sediment. major problems with lightning/viewing angle.

1 The field of view is greatly obscured (>50%) by The image/video is greatly blurred (>50%) or has
close-up species or suspended sediment. some problems with lightning/viewing angle.

2 The field of view is partially obscured (<50%) by  The image/video is greatly blurred (<50%) or has
close-up species or suspended sediment. minor problems with lightning/viewing angle.

3 The field of view is clear/of insignificant The image/video is clear/of insignificant quality

obstruction.

issues.
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2.4.2 Analysis of images from the towed sledge

The still images were analysed using the image annotation function of a web-based application,
BIIGLE. (Langenkédmper et al., 2017). Three types of data were extracted from the analysed images,
including 1) the percentage cover of the fauna, flora and physical benthic substrate by applying the
point sampling technique (Fig. 5) (Ninio et al., 2003; Ryan, 2004; Wakeford et al., 2008); 2) the
presence/absence of faunal and floral taxa; and 3) the abundance of countable epifauna. 5 images
were analysed per towed transect, and each was captured at an interval of 120 seconds apart, achieving
an even distribution of analysed images throughout the 10-minute tow. In case of poor visibility or
quality (scored 0), the image captured 10 seconds before or after was used as a replacement for the

image analysis.

Fig. 5. An example image showing the (regular) point sampling technique applied for obtaining the relative percentage

cover data. The fauna, flora, or physical benthic substrate found at each of the 50 points were identified, with each point
taken as a 2% cover. For this example, the Dahlia anemone, Urticina felina, has been identified at 6 points, thus covering

12% of this image.

All taxa encountered were identified to the lowest possible taxonomical level, using several photo
identification guides, namely Moen and Svensen (2004), Kay and Dipper (2009), Bunker et al. (2012),
Porter (2012), Sterry and Cleave (2012), Wood (2013), and Wood (2018). Broad descriptive

categories were used in the case of problematic taxa identification. Physical benthic substrates were

11
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determined visually and described into board categories based on a simplified version of the
Wentworth scale (Wentworth, 1922) (Table 2). The described substrates include boulders, cobbles,
dead maerl, dead shells, shell fragments, pebbles, and granules.

Table 2

A simplified version of the Wentworth scale, used for physical benthic substrate determination (Wentworth, 1922).

Classification Particle size (diameter)

Boulders >256 mm
Cobbles 64 — 256 mm
Pebbles 4 —64 mm
Granules 2-4mm

2.4.3 Analysis of videos from the BRUVS

The videos were also analysed with BIIGLE (Langenkdmper et al., 2017), using its video annotation
function. The duration of the analysis for each video was standardised as 60 minutes. MaxN, a
conservative, commonly used approach for the estimation of the total number of individuals from a
species (Cappo, 2010; Whitmarsh et al., 2017), was applied to estimate the abundance of mobile
species at each BRUVS station. For any species identified in a video, its MaxN is defined as the
maximum number of individuals observed in a single frame (Ebner et al., 2009; Loiseau et al., 2016).
Since each BRUVS unit has three analysed videos, for an identified mobile species, its abundance
estimate at a BRUVS station was determined by referring to its maximum MaxN value obtained from

the video analyses.
2.5 Data Analysis

All multivariate analyses were performed using functions in PRIMER 7 (details in the following
sections), whereas the univariate analyses were done using the packages installed in RStudio. All

presented maps were prepared in ArcGIS Pro.

2.5.1 Biotope classification

A biotope was assigned to each of the benthic habitats/communities identified from the previous
analyses of the geo-referenced still images. A biotope was assigned through two methods: 1) using
statistical method (multivariate) in PRIMER 7; and 2) application of the habitat classification system,
‘The Marine Habitat Classification for Britain and Ireland’ (MHCBI) (Version 22.04) (JNCC, 2022).

12
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2.5.1.1 Biotope classification in PRIMER 7

A CLUSTER analysis (hierarchical agglomerative method) with the inclusion of similarity profile
(SIMPROF) tests (for defining significant clusters, p < 0.05) was performed on the similarity matrix
of the square-root transformed percentage cover data (Clarke et al., 2014, 2008; Gordon, 1987). The
sampling stations were grouped according to their similarity in benthic community assemblages,

forming individual ‘clusters’, and each ‘cluster’ was defined as a distinctive biotope.

With the defined biotopes as a factor, ANOSIMs (Analysis of similarity) were run on the similarity
matrixes of the square-root transformed percentage cover data, taxa presence/absence data, and
countable epifauna abundance data to determine if the community assemblages of the defined
biotopes are significantly different from each other (Clarke and Green, 1988). As a follow-up analysis,
SIMPERs (Similarity percentage) were carried out on the aforementioned square-root transformed
data, to identify the discriminating taxon that contributed to the distinctiveness of the biotopes
(Clarke, 1993). A non-metric multidimensional scaling (nMDS) plot was eventually used to visualise

the differences between biotopes (Kruskal and Wish, 1978).

2.5.1.2 MHCBI biotope classification

The defined biotopes in the MHCBI system are categorized in a 6-level hierarchical structure (Table
3) (JNCC, 2022). Biotopes in the first 3 levels are defined based on physical parameters, including
water depth, substrate type, wave energy and current energy. Further down the hierarchy,

the biological community information is also included in defining the biotopes.

Table 3
An example of the application MHCBI system for biotope assignment.

Level Category Example Code

Level 1  Environment Marine -

Level 2 Broad habitat type  Sublittoral sediment SS

Level 3  Habitat complex Sublittoral macrophyte-dominated communities on SS.SMp
sediments

Level 4 Biotope complex  Kelp and seaweed communities on sublittoral sediment ~ SS.SMp.KSwSS

Level 5 Biotope Saccharina latissima and red seaweeds on infralittoral SS.SMp.KSwSS.SlatR
sediments
Level 6 Sub-biotope Saccharina latissima and robust red algae on infralittoral SS.SMp.KSwSS.SlatR.Gv

gravel and pebbles

A biotope in the MHCBI system was assigned to each sampling station (analysed still image), based

on both the measured or obtained abiotic and biotic data. For abiotic parameters, water depth was
13
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measured during sampling, substrate type was determined during the analysis of still images, and
wave and current energy were obtained from the EMODnet Seabed Habitats portal (EMODnet, 2022).
As for the biotic component, both the still images and footage captured by the towed sledge within
a similar time frame (+30 seconds) were used for determining the benthic taxon present. All biotopes

were assigned to the lowest possible level.

ANOSIMs followed by SIMPERs were done in a similar approach as mentioned in the previous
section but the factor was changed to the identified MHCBI biotopes. A nMDS plot was also used to
visualise the differences. In addition, the species richness (number of species, S), summed abundance
of countable epifauna and summed algal percentage cover of each sampling station were calculated.
The means were then tested for differences among biotopes using ANOVAs (Analysis of variance),

or Kruskal-Wallis tests, in case of failure to fulfil parametric assumptions of ANOVA (Rohlf, 2011).
2.5.2 Creation of habitat maps

Maps of the estimated extent of the identified biotopes (both classification methods) within the
Langness MNR boundary were created through Euclidean allocation analysis of point samples in
ArcGIS Pro. The biotope assigned to each sampling station was extrapolated to the cells nearby,

eventually forming a map of biotopes covering the area of the MNR.
2.5.3 Environmental variables

The relationship between environmental variables and benthic community assemblage was assessed
using the BEST function (BIO-ENV routine) in PRIMER 7 (Clarke and Gorley, 2015). The
considered variables include water depth, the coverage of different substrate types, algal coverage,
wave energy, and current energy. Through the ‘BEST’ analysis, the variable(s) that ‘best’ correlate

with the community assemblage were identified.
2.5.4 Data from the BRUVS

An ANOSIM with MHCBI biotopes as a factor was run on the similarity matrix of the square-root
transformed mobile species abundance data to test for significant differences in community
assemblage between biotopes. The MHCBI biotope associated with each BRUVS station was
determined based on the created biotope map. A SIMPER was also carried out on the aforementioned
square-root transformed data as a follow-up analysis to identify the discriminating mobile species
that contributed to the distinctiveness of the biotopes. An nMDS plot was eventually applied for

visualization of the differences in community assemblage between biotopes. In addition, the species

14
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richness (number of species, S) of each sampling station was calculated and the mean was then tested

for differences among biotopes using the Kruskal-Wallis test.

A ‘BEST’ analysis was also done to identify which of the three environmental variable(s), namely
water depth, wave energy, and current energy, ‘best’ correlate with the structure of community

composition.
3. Results
3.1 Towed sledge sampling

Due to time constrain, 75 images captured from 15 towed transects (Fig. 6) were selected for analysis
to obtain percentage cover and species data. The images were of acceptable quality only, most had
minor focus issues due to gear malfunctioning. Only 4% of the images scored 3 in both visibility and
quality while the majority (~90%) scored 2 in quality and 3 in visibility.
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Fig. 6. A map showing the location of the 75 analysed still images taken along the 15 towed transects in Langness MNR.

3.1.1 Identified taxa

A total of 82 taxa were identified from the analysed still images (supplementary data, Table A1),
including 18 algae (22%), 16 cnidarians (20%), 15 molluscs (18%), 8 arthropods (10%), 6 bryozoans
(7%), 6 sponges (7%), 4 echinoderms (5%), 3 algae/hydroids/bryozoans mix (4%), 2 annelids (2%),

15
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2 ascidians (2%), and 2 teleosts (2%). More than 80% of the taxa were identified to at least family
level, 73% were identified to species or genus level, and the remaining taxa were categorised into

broad descriptive categories.

Species richness in individual images ranged from 3 to 18 taxa, with an average of 10 taxa per image.
7 taxa were commonly encountered, each found in more than 40% of the analysed still images. These
taxa include brownish-green encrusting bryozoan, Serpulidae spp., Corallinaceae spp., muddy surface
turf, Parasmittina trispinosa, Glycymeris glycymeris, and Steromphala cineraria. 1f only the
countable epifauna is considered, the top five most common taxa include Glycymeris glycymeris
(65%), Steromphala cineraria (48%), Galathea intermedia (32%), Gibbula magus (29%), and
Calliostoma zizyphinum (19%).

Taxa with conservation and commercial importance were identified in Langness MNR, namely maerl
and queen scallop, Aequipecten opercularis. The maerl has a restricted distribution, it was only
present in the northern region of the MNR, both inshore and offshore. Live maerl was present in 9%
of the analysed still images, with an average cover of 0.56 + 0.18%, while dead maerl was sighted in
40% of the images and averaged at 4.70 + 0.54% cover. As for the queen scallop, only a single
individual was recorded from the analysed still images, in which the sampling station was situated in

the centre of the MNR.
3.1.2 Environmental variables

The water depth (below CD) of the sampling stations ranged from 19.1m to 38.7m, with an average
of 32.0+0.57m (Fig. 7a). The substratum across the sampling area was heterogenous, with granules,
pebbles, cobbles, boulders, shells, and coarse sediments. Most of the sampling areas have substrates
mainly composed of pebbles and cobbles, with some degree of shells and coarse sediments. The
strength of the current and wave in these areas was generally weak to moderate. In areas with
substratum consisting of boulders, e.g. the coastal waters in front of Langness Peninsula and Port

Grenaugh, the current or wave strength was comparatively stronger (Fig. 7b).
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Fig. 7a. A map showing the bathymetry (below CD) across the areas of the Langness MNR (EDINA, 2020), with locations

of towed sledge sampling stations (only those with image analysis done) overlaid on top.
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3.1.3 PRIMER biotopes

Based on the percentage cover data, the PRIMER statistical approach has identified 9 clusters of
benthic communities (supplementary data, Fig. A1) in Langness MNR. Each ‘cluster’ is defined as a
distinct biotope, named with an alphabet (a-1). The associated PRIMER biotope of each sampling
point (analysed still image) and their distribution within the Langness MNR boundary is shown on

the map in Figure 8.

ANOSIMs have confirmed the significant difference in community structure among biotopes, in
terms of both the percentage cover data (R = 0.724, p = 0.001) (Fig. 9) and taxa presence/absence
data (R = 0.431, p = 0.001). The summary of each of the identified biotopes is provided in Table 4
with the inclusion of the SIMPER analysis results.
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within the Langness MNR boundary.
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Fig. 9. An nMDS plot showing the relationship between communities of each sample. The plot was created using

percentage cover data, with each sample assigned a symbol according to their associated biotope. Points in close proximity

indicate high similarity with each other while points further apart indicate low similarity.
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Table 4

A summary of the benthic biotopes identified in Langness MNR using the PRIMER statistical approach. The table below
includes the total number of sampling sites (still images used) for each biotope, the average similarity in percentage cover
data among sampling sites within each biotope (full SIMPER analysis result of the percentage cover data is available in
the supplementary data, Table A2), and the discriminating taxa for each biotope (the taxa that contributed to both within
biotope similarity and between biotopes dissimilarity in terms of community composition), based on the taxa

presence/absence data.

PRIMER  No. of sampling sites  Average

Biotope (still images used) similarity Discriminating taxa

a 5 43% Branching red seaweed, Clavelina lepadiformis, Delesseria
sanguinea, Flat brown seaweed, Mixed turf of algae with bryozoan
and/or hydroid, Parasmittina trispinosa, Phyllophora spp.,
Plocamium spp., Schizomavella spp., Steromphala cineraria, Thin
flat red seaweed

b 1 100% Calliostoma zizyphinum, Galathea intermedia, Halecium spp.,
Hydrallmania falcata, Nemertesia antennina, Pagurus bernhardus,
Pomatoschistus spp.

c 1 100% Serpulidae spp.

d 4 61% Anomiidae spp., Corynactis viridis, Crisia spp., Schizomavella
spp., Steromphala cineraria, Tubularia indivisa

e 1 100% Small pinkish crab, Synarachnactis lloydii

f 1 100% Steromphala cineraria

g 12 69% Gibbula magus, Glycymeris glycymeris, Steromphala cineraria

h 6 61% Brownish green encrusting bryozoan, Glycymeris glycymeris,

Hapalidiaceae spp., Nemertesia antennina, Serpulidae spp.

i 44 60% Galathea intermedia, Glycymeris glycymeris, Mixed turf of
bryozoan and hydroid, Muddy surface turf, Steromphala cineraria
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3.1.4 MHCBI biotopes

Based on the percentage cover data, the MHCBI classification system approach has identified 6
distinct biotopes in Langness MNR. The associated MHCBI biotope of each sampling point (analysed
still image) and its distribution within the Langness MNR boundary are shown on the map in Figure
10.

ANOSIMs have confirmed the significant difference in community structure among biotopes, in
terms of the percentage cover data (R = 0.585, p = 0.001) (Fig. 11), taxa presence/absence data (R =
0.447, p = 0.001), and countable epifauna abundance data (R = 0.505, p = 0.001). The summary of
each of the identified biotopes is provided in Table 5 with the inclusion of the SIMPER analysis

results.
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Fig. 10. A map showing the associated MHCBI biotope of each sampling point (analysed still image) and their distribution
within the Langness MNR boundary.
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Fig. 11. An nMDS plot showing the relationship between communities of each sample. The plot was created using

percentage cover data, with each sample assigned a symbol according to their associated biotope. Points in close proximity

indicate high similarity with each other while points further apart indicate low similarity.
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335 Table 4

336 A summary of the benthic biotopes identified in Langness MNR using the MHCBI classification system approach. The

337  table below includes the total number of sampling sites (still images used) for each biotope, the average similarity in

338 percentage cover data among sampling sites within each biotope (full SIMPER analysis result of the percentage cover

339 data is available in the supplementary data, Table A3), and the discriminating taxa for each biotope (the taxa that

340 contributed to both within biotope similarity and between biotopes dissimilarity in terms of community composition),

341  based on the taxa presence/absence data.

No. of
. sampling
MHCBI Biotope Biotope sites (still Avgrage Discriminating taxa
n - similarity
images
used)
CR.HCR.FaT.Ctub 1 5 59% Anomiidae spp., Balanus spp.,
Corynactis viridis, Crisia spp., Mixed
Tubularia indivisa on tide-swept turf of bryozoan and hydroid,
circalittoral rock Schizomavella spp., Steromphala
cineraria, Tubularia indivisa
CR.MCR.EcCr.FaAlCr 2 5 69% Balanus spp., Calliostoma zizyphinum,
Corynactis viridis, Tubularia indivisa
Faunal and algal crusts on
exposed to moderately wave-
exposed circalittoral rock
IR.HIR.KFaR.FoR 3 4 48% Delesseria sanguinea, Dictyota
dichotoma, Mixed turf of algae with
Foliose red seaweeds on exposed bryozoan and/or hydroid, Nemertesia
lower infralittoral rock antennina, Parasmittina trispinosa,
Phyllophora spp., Schizomavella spp.
SS.SCS.CCS 4 20 59% Glycymeris glycymeris, Parasmittina
trispinosa, Steromphala cineraria
Circalittoral coarse sediment
SS.SCS.CCS.SpiB 5 35 60% Corallinaceae spp., Galathea intermedia,
Glycymeris glycymeris, Mixed turf of
Spirobranchus triqueter with bryozoan and hydroid, Muddy surface
barnacles and bryozoan crusts on turf, Parasmittina trispinosa,
unstable circalittoral cobbles and Steromphala cineraria
pebbles
SS.SMp.KSwSS.SlatR 6 6 52% Brownish green encrusting bryozoan,

Saccharina latissima and red
seaweeds on infralittoral
sediments

342

Calliostoma zizyphinum, Gibbula magus,
Hapalidiaceae spp., Mixed turf of algae
with bryozoan and/or hydroid, Muddy
surface turf, Nemertesia antennina,
Plocamium spp., Serpulidae spp.,
Steromphala cineraria
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343 3.1.5 Summary of biotope classifications

344  In summary, the two biotope classification approaches have identified 9 (PRIMER) and 6 (MHCBI)
345  biotopes respectively. The associated biotope of each sampling point was extrapolated to its nearby
346  areas, creating maps showing the estimated distribution of biotopes within the Langness MNR
347  boundary (Fig. 12). Considering the suitability of the approach to the data collected, the MHCBI
348  classification system has been adopted for the remaining analysis of the data (to be further explained

349  in discussion).
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352 Fig. 12. Maps showing the estimated distribution of PRIMER biotopes (above) and MHCBI biotopes (below) within the
353 Langness MNR boundary.
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3.1.6 Patterns among the MHCBI biotopes identified

There was a significant variation in mean species richness among the MHCBI biotopes identified
(F5,70 = 6.56, p <0.001), ranging from 8 taxa per image in biotope 4 to 15 taxa per image in biotope
1 (Fig. 13). In addition, a significant difference in countable epifauna abundance (X?> = 32.8, df = 5,
p <0.001) and algal percentage cover (X> =24.4, df =5, p <0.001) was also found across the MHCBI
biotopes. Biotope 5 has the highest mean in the summed abundance of the countable epifauna (11
individuals per image), while the mean of the summed algal percentage cover peaked in biotope 3

(41%) (Fig. 13).
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Fig. 13. Graphs showing the means (+ S.E.) of (a) species richness, (b) summed countable epifauna abundance, and (c)
summed algal percentage cover (%) across the 6 MHCBI biotopes identified. Biotope numbers align with those used in
Table 4.

Environmental variables also varied across the MHCBI biotopes identified, including water depths
(below CD), coverage of different substrate types, average current energy, and average wave energy
(Fig. 14). Species richness appeared to be relatively more correlated to the percentage cover of the
substrate types. Biotopes with a substratum of higher portions of cobbles and boulders, e.g. biotopes
1 and 2, have displayed higher species richness (Fig. 13 and 14). Taking all 11 environmental

parameters into consideration, the ‘BEST’ analysis using the taxa presence/absence data has found
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372  that the community assemblage of the biotopes was best described by 5 factors, including water depth,

373  percentage cover of boulders and pebbles, and average energy of current and wave (correlation of

374 0.623).
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376 Fig. 14. Graphs showing the means (+ S.E.) of (a) water depth (m), (b) average wave energy ((N/m?), (c) average current
377 energy ((N/m?), and (d) percentage cover of substrates (%) across the 6 MHCBI biotopes identified. Biotope numbers
378 align with those used in Table 4.

379 3.2 BRUVS Sampling

380 Due to time constraints and gear malfunctioning, of the 20 BRUVS deployed, only data from 10
381 BRUVS were analysed. The deployment sites of these BRUVS have a water depth (below CD)
382  ranging from 21.8m to 37.3m, consist of 4 types of substrata, and were spread across 5 types of

383  MHCBI biotopes identified previously (Fig. 15).
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Mobile species communities associated with each MHCBI biotope identified were significantly
different (R = 0.846, p =0.001) (Fig. 16), but the communities did not differ significantly when
substrate types were used for the categorization of habitats (R = 0.262, p = 0.167). The species
richness did not differ significantly across the MHCBI biotopes (X2 = 4.25, df =4, p =0.374), but a
relatively higher means was found in biotope 4 (12 taxa per footage) and biotope 6 (10 taxa per
footage), in which their substratum was mainly composed of pebbles and cobbles, with some degree

of coarse sediment (Fig. 15).
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Fig. 16. An nMDS plot showing the relationship between mobile species communities of each BRUVS sample. The plot
was created using the abundance data (MaxN), with each sample assigned a symbol according to its associated biotope.

Points in close proximity indicate high similarity with each other while points further apart indicate low similarity.

A total of 41 taxa were identified from the analysed BRUVS footage (appendix, Table A5), including
15 teleosts (37%), 13 arthropods (32%), 6 molluscs (15%), 4 echinoderms (10%), 2 elasmobranchs
(5%), and 1 ctenophore (3%). The most frequently encountered taxon was found to be the small-
spotted catshark, Scyliorhinus canicular, which was present in every analysed BRUVS footage, with
an average of 1.70+0.40 individuals per footage and a maximum abundance of 4 individuals recorded
in two BRUVS (in biotopes 4 and 6). The other elasmobranch recorded, the nursehound, Scyliorhinus
stellaris, was only sighted in two BRUVS footages (in biotopes 1 and 6), with an abundance of 2 and
3 individuals respectively. The brown shrimp, Crangon crangon, was the second-most frequently
encountered taxon, recorded in 8 of the BRUVS footage (in biotopes 1, 3, 4 and 5). It averaged at
9.75+2.91 individuals per footage and a maximum abundance of 25 individuals was sighted in one

BRUVS (in biotope 5). Other commonly sighted taxa, each recorded in 4 or more BRUVS footage,
29



410
411
412
413
414
415
416

417
418
419
420

421

422
423
424
425
426
427
428
429

430
431
432
433
434
435
436
437
438
439

440
441

include the edible sea urchin, Echinus esculentus, common whelk, Buccinum undatum, butterfish,
Pholis gunnellus, Sea gooseberry, Pleurobrachia pileus, and Bernhard's hermit crab, Pagurus
bernhardus. In addition, though only recorded in 2 (in biotopes 3 and 6) and 3 (in biotopes 4 and 5)
BRUVS respectively, the poor cod, Trisopterus minutus, and netted dog whelk, Tritia reticulata, both
have a relatively high mean abundance, averaging at 64.0+57.0 and 20.7+14.5 individuals per footage
respectively. The poor cod has a maximum abundance record of 121 individuals in one BRUVS (in

biotope 6) while that of the netted dog whelk was 49 individuals (in biotope 5).

Taking the environmental variables into account, in terms of a single factor, it was found that the
mobile species communities were best described by the average energy of current in the area
(correlation of 0.452). With an additional factor of average wave energy included, the correlation

increased further (correlation of 0.495).
4. Discussion

Langness MNR contains a range of benthic habitats, from pebbly sand to algal-dominated stony rocky
substrate. Most of the MNR areas are characterised by coarse sediments and the commonest taxa
were encrusting species, such as Serpulidae spp. and Parasmittina trispinosa. Dead maerl and
encrusting coralline algae were frequently encountered, both appeared in more than 40% of the
analysed images; conversely, live maerl were rarely sighted and only recorded in 7 images. In
comparison to other MNRs, the epifauna species richness in Langness was higher than Laxey and
Niarbyl Bay and comparable to Port Erin Bay, Ramsey Bay, Douglas Bay (Garratt et al., 2022a,
2022b, 2022c, 2022d, 2022¢).

Environmental processes are major determinants of marine communities and habitats. The
hydrodynamic regime affects the distribution of different types of sediment, forming different
substratum within an area. The varied substratum created different habitats and thus shaped different
communities of species (Connor et al., 2004). This study has identified the substrate composition,
water depth, and strength of wave and current energy as the most important factors in shaping the
composition of benthic communities. It is believed that a further increase in variation of these factors
would result in more significant differences among the communities identified. Meanwhile, it is
important to note that environmental factors are interactive, as mentioned, and they do not act
independently. The scope of this study is only to identify the factors that best correlate with the

community data, not to study the effect of individual factors.

Environmental drivers of BRUVS communities were similar and also had a combination of water
depth, strength of wave and current energy as the best descriptor of community composition. Though
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the community composition was significantly different across the MHCBI biotopes, they did not
differ significantly across different types of substrata, and no association between species richness
and algal cover has been recognised. The condition might be explained by the mobile nature of the
species. As mentioned in Kaiser et al. (2020), mobile taxa are less associated with environmental
conditions when compared with the sessile component of a community. The mobile taxa identified in
the BRUVS communities, such as fishes and crustaceans, might not have specific habitat
requirements, but they rely on hydrodynamic activities to assist their movements, migration, and

foraging activities.

This study aimed to create a map of the distribution of biotopes, in which a biotope is assigned based
on biotic and abiotic factors (Connor et al., 2004). The PRIMER approach for biotope classification
only takes account of the percentage cover data of the analysed still images. Though the substrate
information is included, other environmental variables were excluded, as well as other taxa that were
absent in the percentage cover data. Conversely, the MHCBI classification system approach has
considered several environmental data, including depth and energy of wave and current, and has
included both the percentage cover and tax presence/absence data from the analysed images, for the
assignment of biotopes. In addition, with such an approach, the information obtained from the video
footage can also be considered for a more accurate assignment of the biotope, since still images only
provide sections of the seabed, whereas the continuity of video footage can offer a broader view of
the seabed. Given the MHCBI classification system approach can cope with variations in habitats and

communities, it is regarded as a more suitable approach for biotope assignment in this study.

Due to gear malfunctioning, the majority of still images (~90%) captured had minor focus issues and
thus, were not of the best quality for analysis. This issue had an impact on species identification, as
some taxa encountered could only be identified to family level or even assigned to broad descriptive
categories due to the blurriness of the image. It is believed that this might have affected the number
of taxa identified, the recognition of the overall community, and potentially the accuracy of biotope
assignments. However, since the issue was caused by equipment failure, not much could be done to
mitigate the impact for the current study. In future studies, it is suggested to carry out several in-water
trials for the survey equipment before the actual survey, to ensure that the settings are correct and the
gear itself is functioning properly. As for this study, if possible, it would be ideal to redo some of the

tows, to get a more accurate picture of the habitats and communities present in the area.

Though the identification level for the same taxa was consistent throughout the data analysis process,
there was a variation in the taxonomical levels for the identification of different taxa. Some were

identified to species level, while to the other extreme, some were only able to be grouped into broad
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descriptive categories, especially for bryozoans, hydroids, and algae. Several species are likely to be
present in the same group for these categories. Thus, if all encountered taxa have been identified to

species level, the assignments of biotopes might differ.

One of the drawbacks of benthic imagery surveys is that they failed to account for the presence of
small epifauna as well as infaunal community (Beisiegel et al., 2017). Since infauna are a key
component of benthic communities (Elliott, 1994), and a large proportion of the sampling stations in
this study have sediment-based substratum, the inclusion of benthic grab sampling would help
complete the identification of all taxa present in a particular benthic community, improving the

accuracy of the eventual biotope assignments.

Constrained by time, it was only possible to conduct 1 tow in each sampling grid, and though still
images of benthic habitats were taken at frequent intervals of 10 seconds in each tow, only 1 image
was selected for analysis every 120 seconds. Many previous studies elsewhere on coastal benthic
communities (e.g. Herndndez-Ferndndez et al., 2019; Wahl, 2001) have found that the assemblage,
coverage, and diversity of benthic fauna could vary on a small spatial scale. As such, in this study,
the single tow done in each sampling grid and the limited amount of analysed still images might not
have captured all habitats and communities present within the area of the grid. It is therefore suggested
that future studies could focus on areas of particular interest, complete multiple tows in a single grid,
and analyse more still images per tow, aiming to obtain a more representative assessment of the

habitats and communities present.
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Supplementary data

Table A1

List of taxa identified from the benthic still images taken in the Langness MNR, Isle of Man.

Hydrallmania falcata

Kirchenpaueria pinnata

Nemertesia antennina

Nemertesia ramosa

Tubularia indivisa

Alcyonium digitatum

Muddy branching hydroid

Short stalky hydroid

Echinoderms

Crossaster papposus

Henricia spp.

Echinus esculentus

Psammechinus miliaris

Algae

Phylum Taxon Phylum Taxon
Annelids Lanice_ conchilega Aequi_pecten opercularis
Serpulidae spp. Anomiidae spp.
Galathea intermedia Glycymeris glycymeris
Pagurus bernhardus Buccinidae spp.
Pagurus prideaux Calliostoma zizyphinum
Pandalus spp. Colus spp.
Arthropods Pisidia longicornis Coryphella spp.
Polybius depurator Molluscs Gibbula magus
Small pinkish crab Nucella lapillus
Balanus spp. Ocenebra erinaceus
Crisularia plumosa Rissoidae spp.
Parasmittina trispinosa Steromphala cineraria
Bryozoans Rep_tadeonella violacea Trivia mon_acha
Schizomavella spp. Acanthochitona spp.
Crisia spp. Greyish shell gastropod
Brownish green encrusting bryozoan Dysidea fragilis
Ascidians Ascidia_l SPp.__ _ Hemimycale cglumella
Clavelina lepadiformis Tethya aurantium
- Sponges - -
Teleosts Pomatoschlstus_ Spp. Dark browmsh encrusting sponge
Taurulus bubalis Orange colonial sponge
Corynactis viridis Yellow colonial sponge
Cylista elegans Mixed turf of algae with bryozoan and/or hydroid
Epizoanthus spp. Turf complex |Mixed turf of bryozoan and hydroid
Synarachnactis lloydii Muddy surface turf
Urticina felina Bonnemaisonia asparagoides
Abietinaria abietina Corallinaceae spp.
Halecium spp. Cryptopleura ramosa
Cnidarians Halopteris spp. Delesseria sanguinea

Dictyota dichotoma

Hapalidiaceae spp.

Heterosiphonia plumosa

Laminaria hyperborea

Nitophyllum punctatum

Phycodrys rubens

Phyllophora spp.

Plocamium spp.

Rhodophyllis spp.

Branching red seaweed

Flat brown seaweed

Fluffy colonial red seaweed

Fluffy green seaweed

Thin flat red seaweed
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Fig. A1. A dendrogram showing the result of the CLUSTER analysis with the inclusion of similarity profile (SIMPROF) tests (p < 0.05) on the similarity matrix of the square-root

transformed percentage cover data. Each resultant ‘cluster’ is defined as a distinctive biotope.
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Table A2

Results of the SIMPER analysis on the community composition (percentage cover data) of the biotopes identified through
the PRIMER statistical approach. The taxa that contributed the most to the similarities within the biotope are listed, with
the percentage cut-off set at 90%.

Taxa / Substratum Av.%cover Av.Sim Sim/SD  Contrib% Cum.%
Biotope a - average similarity: 42.99%

Muddy surface turf 2.99 8.59 3.46 19.99 19.99
Mixed turf of algae with bryozoan and/or hydroid 3.51 7.69 1.71 17.88 37.86
Corallinaceae spp. 3.16 6.86 251 15.95 53.81
Pebble 2.36 3.79 1.02 8.82 62.64
Branching red seaweed 1.78 3.79 1.14 8.81 71.45
Phyllophora spp. 1.95 3.24 0.94 7.53 78.98
Plocamium spp. 1.88 2.61 0.62 6.07 85.05
Thin flat red seaweed 141 1.7 0.58 3.96 89.01
Heterosiphonia plumosa 1.59 1.03 0.32 2.39 91.4
Biotope d - average similarity: 61.48%

Pebble 4.39 11.48 4.87 18.67 18.67
Cobble 3.95 9.35 2.68 15.21 33.88
Corynactis viridis 3.47 6.7 2.05 10.89 44.78
Mixed turf of bryozoan and hydroid 2.51 5.75 2.81 9.35 54.12
Shell fragment 251 5.71 3.09 9.3 63.42
Muddy surface turf 1.71 4.58 6 7.46 70.88
Anomiidae spp. 1.56 4.29 25.73 6.97 77.85
Tubularia indivisa 1.79 3.12 0.91 5.07 82.92
Boulder 1.47 2.4 0.89 3.91 86.83
Serpulidae spp. 1.32 2.2 0.91 3.59 90.41
Biotope g - average similarity: 69.46%

Pebble 5.71 21.35 5.05 30.73 30.73
Shell fragment 5.05 19.17 6.97 27.59 58.33
Dead shell 4.6 15.26 2.45 21.98 80.3
Granule 1.35 3.31 1.06 4.77 85.07
Corallinaceae spp. 1.26 2.96 0.82 4.27 89.33
Dead maerl 1.44 2.88 0.67 4.14 93.48
Biotope h - average similarity: 60.69%

Pebble 4.97 14.62 3.28 24.09 24.09
Dead maerl 3.8 11.33 4.81 18.68 42.77
Corallinaceae spp. 3.11 8.9 3.66 14.67 57.44
Shell fragment 2.78 6.73 2.59 111 68.54
Cobble 2.56 6.24 1.35 10.28 78.82
Dead shell 1.62 3.45 1.35 5.69 84.51
Muddy surface turf 1.62 3.39 1.35 5.58 90.09
Biotope i - average similarity: 59.66%

Pebble 4.61 12.75 2.37 21.38 21.38
Shell fragment 3.16 8 2.02 13.41 34.79
Cobble 2.88 7.24 1.96 12.14 46.93
Muddy surface turf 2.69 6.95 1.99 11.64 58.57
Serpulidae spp. 2.3 6.08 2.43 10.18 68.76
Corallinaceae spp. 2.6 6.04 1.4 10.13 78.89
Dead shell 2.49 4.74 0.95 7.94 86.83
Brownish green encrusting bryozoan 1.81 3.83 1.06 6.42 93.25
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Table A3
Results of the SIMPER analysis on the community composition (percentage cover data) of the biotopes identified through
the application of the MHCBI classification system. The taxa that contributed the most to the similarities within the

biotope are listed, with the percentage cut-off set at 90%.

Taxa / Substratum Av.%cover Av.Sim Sim/SD  Contrib% Cum.%
CR.HCR.FaT.Ctub - average similarity: 59.30%

Pebble 4.08 10.33 4.48 17.42 17.42
Cobble 3.65 8.45 2.94 14.26 31.68
Corynactis viridis 3.34 6.93 2.52 11.69 43.37
Shell fragment 2.9 6.46 281 10.89 54.27
Muddy surface turf 2 4.83 5.38 8.15 62.41
Anomiidae spp. 1.53 4.29 28.17 7.24 69.66
Mixed turf of bryozoan and hydroid 2.01 3.45 1.03 5.81 75.47
Boulder 1.74 3.22 1.08 5.43 80.9
Corallinaceae spp. 2.09 3.1 0.97 5.23 86.13
Serpulidae spp. 1.34 2.63 1.16 4.44 90.57
CR.MCR.EcCr.FaAICr - average similarity: 69.23%

Serpulidae spp. 3.44 10.15 8.24 14.66 14.66
Muddy surface turf 3.2 9.54 6.78 13.79 28.45
Pebble 3.2 9.38 6.59 13.54 41.99
Shell fragment 3.15 8.68 3.96 12.53 54.52
Cobble 3.02 8.31 3.78 12.01 66.53
Brownish green encrusting bryozoan 2.81 7.56 2.97 10.92 77.46
Corallinaceae spp. 2.99 7.48 3.09 10.8 88.25
Boulder 2.04 4 1.03 5.78 94.04
IR.HIR.KFaR.FoR - average similarity: 47.81%

Mixed turf of algae with bryozoan and/or hydroid 4.32 11.89 4.13 24.87 24.87
Muddy surface turf 3.31 10.33 19.98 21.61 46.48
Corallinaceae spp. 3.03 8.44 5.6 17.65 64.13
Phyllophora spp. 2.7 6.69 2.7 13.98 78.12
Pebble 1.67 2.72 0.86 5.69 83.81
Plocamium spp. 141 1.61 0.41 3.36 87.17
Dead maerl 1.88 1.43 0.41 2.99 90.16
SS.SCS.CCS - average similarity: 58.75%

Pebble 5.13 16.56 2 28.19 28.19
Shell fragment 4.25 14.02 2.54 23.86 52.06
Dead shell 4.45 13.54 2.01 23.05 75.11
Corallinaceae spp. 1.91 3.63 0.9 6.18 81.28
Glycymeris glycymeris 11 2.45 0.81 4.16 85.45
Granule 1.3 2.17 0.69 3.7 89.14
Dead maerl 1.21 1.97 0.54 3.36 925
SS.SCS.CCS.SpiB - average similarity: 59.65%

Pebble 4.68 13.17 2.35 22.08 22.08
Shell fragment 3.13 7.87 18 13.2 35.28
Cobble 2.97 7.64 2.01 12.81 48.1
Muddy surface turf 2.57 6.39 1.74 10.72 58.82
Serpulidae spp. 2.27 6.31 3.01 10.58 69.4
Dead shell 2.62 5.16 0.97 8.65 78.05
Corallinaceae spp. 2.33 5.01 1.14 8.4 86.45
Brownish green encrusting bryozoan 1.72 3.65 1.03 6.11 92.56
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Taxa / Substratum Av.%cover Av.Sim  Sim/SD  Contrib% Cum.%
SS.SMp.KSwsSS.SlatR - average similarity: 51.84%

Pebble 4.76 13.93 4.62 26.87 26.87
Corallinaceae spp. 3.39 8.09 2.18 15.61 42.48
Cobble 2.46 6.19 1.36 11.94 54.42
Dead maerl 2.77 5.78 1.17 11.15 65.57
Shell fragment 1.8 3.44 1.27 6.63 72.2
Muddy surface turf 1.67 3.41 1.32 6.58 78.79
Dead shell 1.62 3.16 1.32 6.1 84.89
Hapalidiaceae spp. 1.45 2.24 0.74 4.33 89.21
Mixed turf of algae with bryozoan and/or hydroid 1.14 1.88 0.78 3.63 92.84
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Table A4

List of taxa identified from the BRUVS footages taken in the Langness MNR, Isle of Man.

Phylum Taxon Phylum Taxon
Atelecyclus rotundatus Gobius paganellus
Cancer pagurus Labrus bergylta
Cragon cragon Labrus mixtus
Crangon allmanni Pholis gunnellus
Inachus spp. Teleosts Pollachius pollachius
Liocarcinus spp. Pomatoschistus flavescens

Arthropods Necora puber Pomatoschistus spp.
Pagurus bernhardus Syngnathus schlegeli
Pagurus prideaux Trisopterus minutus
Eurynome aspera Ctenophore |Pleurobrachia pileus

Munida rugosa

Pisidia longicornis

Xantho spp.

Elasmobranchs

Scyliorhinus canicula

Echinoderms

Henricia spp.

Marthasterias glacialis

Echinus esculentus

Ophiothrix fragilis

Scyliorhinus stellaris

Teleosts

Blenniiformes spp.

Blennius ocellaris

Chelidonichthys cuculus

Ctenolabrus rupestris

Diplecogaster bimaculata

Gobiidae spp.

Molluscs

Bittium reticulatum

Buccinum undatum

Calliostoma zizyphinum

Neptunea antiqua

Nucella lapillus

Tritia reticulata
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